Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38671793

RESUMEN

Chitosan nanoparticles (CS-NPs) are currently under investigation for a wide range of applications in nanomedicine. We investigated the structural, morphological, and molecular properties of CS-NPs synthesized via ionic gelation and designed specifically for drug delivery. The CS-NPs were prepared at concentrations ranging from 0.25 to 1.0% w/v. The 1.0% w/v CS-NPs were also functionalized with polyethylene oxide (PEO) alone and with a diblock copolymer of PEO and polypropylene glycol (PPG). The average nanoparticle size determined from TEM imaging is in the 11.3 to 14.8 nm range. The XRD and TEM analyses reveal a semi-crystalline structure with a degree of crystallinity dependent upon the nature of CS-NP functionalization. Functionalizing with PEO had no effect, whereas functionalizing with PEO-PPG resulted in a significant increase in the crystallinity of the 1.0% w/v CS-NPs. Additionally, the CS/TPP concentration (CS:TPP fixed at a 1:1 ratio) did not impact the degree of crystallinity of the CS-NPs. FTIR analysis confirmed the incorporation of TPP with CS and an increase in hydrogen bonding in more crystalline CS-NPs.

2.
Nanotechnology ; 35(7)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972394

RESUMEN

While lithium-ion batteries (LIBs) are approaching their energy limits, lithium metal batteries (LMBs) are undergoing intensive investigation for higher energy density. Coupling LiNi0.8Mn0.1Co0.1O2(NMC811) cathode with lithium (Li) metal anode, the resultant Li||NMC811 LMBs are among the most promising technologies for future transportation electrification, which have the potential to realize an energy density two times higher than that of state-of-the-art LIBs. To maximize their energy density, the Li||NMC811 LMBs are preferred to have their cathode loading as high as possible while their Li anode as thin as possible. To this end, we investigated the effects of different cathode active material loadings (2-14 mg cm-2) on the performance of the Li||NMC811 LMBs. Our study revealed that the cathode loadings have remarkably affected the cell performance, in terms of capacity retention and sustainable capacity. Cells with high cathode loadings are more liable to fade in capacity, due to more severe formation of the CEI and more sluggish ion transport. In this study, we also verified that the protection of the Li anode is significant for achieving better cell performance. In this regard, our newly developed Li-containing glycerol (LiGL) via molecular layer deposition (MLD) is promising to help boost the cell performance, which was controllably deposited on the Li anode.

3.
Chem Sci ; 12(22): 7930-7936, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34168847

RESUMEN

Metalation of covalent organic frameworks (COFs) is a critical strategy to functionalize COFs for advanced applications yet largely relies on the pre-installed specific metal docking sites in the network, such as porphyrin, salen, 2,2'-bipyridine, etc. We show in this study that the imine linkage of simple imine-based COFs, one of the most popular COFs, readily chelate transition metal (Ir in this work) via cyclometalation, which has not been explored before. The iridacycle decorated COF exhibited more than 10-fold efficiency enhancement in (photo)catalytic hydrogen evolution from aqueous formate solution than its molecular counterpart under mild conditions. This work will inspire more functional cyclometallated COFs to be explored beyond catalysis considering the large imine COF library and the rich metallacycle chemistry.

4.
ACS Appl Mater Interfaces ; 13(20): 24013-24023, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34000195

RESUMEN

A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic MnxNi1-xO and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the MnxNi1-xO and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4-7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur: NiO/MnxNi1-xO core-shell-like heterostructures at the pH of 2.4, mixed NiO/MnxNi1-xO and/or/Mn3O4 core-overgrowth structures for 2.4 < pH < 4.5, and predominantly NiO/Mn3O4 core-island structures for pH > 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solution used to synthesize the samples. The temperature-dependent magnetization and hysteresis loop data are consistent with the nature of overlayer coverage of the NiO core. Our DFT based calculations show that the MnxNi1-xO phase has ferrimagnetic properties with a stable spin orientation along the ⟨111⟩ orientation. Furthermore, the calculations show that the magnetic anisotropy constant (K1) of the Mn3O4 phase is considerably larger than that of the MnxNi1-xO phase, which is confirmed by our experimental results. The coercivity and exchange bias field are the largest for the NiO/Mn3O4 core-island nanocrystals, synthesized at a pH value of 5.0, with robust values of nearly 6 kOe and 3 kOe, respectively. This work demonstrates the tunability of hydrothermal deposition, and concomitant magnetic coercivity and exchange bias properties, of MnxNi1-xO and/or Mn3O4 nanophase overgrowth over a NiO core with pH, that makes these heterostructured nanocrystals potentially useful for magnetic device, biomedical, and other applications.

5.
ACS Appl Mater Interfaces ; 13(18): 21740-21747, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33913321

RESUMEN

New linkages for covalent organic frameworks (COFs) have been continuously pursued by chemists as they serve as the structure and property foundation for the materials. Developing new reaction types or modifying known linkages have been the only two methods to create new COF linkages. Herein, we report a novel strategy that uses H3PO3 as a bifunctional catalyst to achieve amine-linked COFs from readily available amine and aldehyde linkers. The acidic proton of H3PO3 catalyzes the imine framework formation, which is then in situ reduced to the amine COF by the reductive P-H moiety. The amine-linked COF outperforms its imine analogue in promoting Knoevenagel condensation because of the more basic sites and higher stability.

6.
ACS Omega ; 6(10): 6871-6880, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33748601

RESUMEN

Gold has always fascinated humans, occupying an important functional and symbolic role in civilization. In earlier times, gold was predominantly used in jewelry; today, this noble metal's surface properties are taken advantage of in catalysis and plasmonics. In this article, the plasmon resonance of gold dumbbell nanorods is investigated. This unusual morphology was obtained by a seed-mediated growth method. The concentration of chemical precursors such as cetyltrimethylammonium bromide and silver nitrate plays a significant role in controlling the shape of the nanorods. Indeed, the aspect ratio of dumbbell nanostructures was varied from 2.6 to 4. UV-visible absorption spectra revealed a shift of the longitudinal surface plasmon resonance peak from 669 to 789 nm. Having the plasmon resonance in the near infrared region helps to use those nanostructures as photothermal agents.

7.
ACS Appl Mater Interfaces ; 13(5): 6349-6358, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33496569

RESUMEN

A new covalent organic framework (COF) based on imine bonds was assembled from 2-(4-formylphenyl)-5-formylpyridine and 1,3,6,8-tetrakis(4-aminophenyl)pyrene, which showed an interesting dual-pore structure with high crystallinity. Postmetallation of the COF with Pt occurred selectively at the N donor (imine and pyridyl) in the larger pores. The metallated COF served as an excellent recyclable heterogeneous photocatalyst for decarboxylative difluoroalkylation and oxidative cyclization reactions.

8.
J Food Sci ; 85(10): 3543-3551, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32869300

RESUMEN

The objective of this study was to prepare protein isolate from defatted soybean and identify an optimal hydrolysis protocol to create improved hydrolysates and ascertain the optimum encapsulation technique for probiotics. Soy protein isolate (SPI) was prepared using an alkaline extraction procedure for solubility within a neutral, beverage-specific pH range. The soy protein hydrolysate (SPH) was prepared from aqueous extracted SPI using pepsin. The physicochemical properties of the SPH were investigated by solubility, degree of hydrolysis (DH), surface hydrophobicity, and electrophoresis. Hydrolysates from 2, 2.5, and 3 hr of hydrolysis time achieved the suitable DH between 2.5% to 5.0%. The 2.5 to 3 hr hydrolysates were also significantly more soluble than SPI at all pH levels from 85% to 95% solubility. Surface hydrophobicity of the hydrolysates ranged from 15 to 20 S0 values. Alginate (1%), resistant starch (2%), and probiotic culture (0.1%) were used as an encapsulation agent to protect probiotics. Alginate microcapsules were observed to be 1 mm in size using environmental scanning electron microscopy. The dried SPH and encapsulated probiotics with alginate in a dry powder formulation were tested for its gastrointestinal resistance and probiotic viability under in vitro simulated digestion. Approximately 1-log decrease was observed for all experimental groups after simulated digestion (final log colony forming units [CFU]/mL range: 6.55 to 6.19) with free probiotics having the lowest log CFU/mL (6.10 ± 0.10) value. No significant difference was observed among experimental groups for probiotic viability (P = 0.445). The findings of this research will provide an understanding of formulation for easily digestible protein and encapsulated probiotics. PRACTICAL APPLICATION: The findings of this research provide an understanding of improved formulation for more suitable soy protein hydrolysate and viability of encapsulated probiotics in gastrointestinal environment. Probiotics with the prebiotics in an encapsulated environment provide a technology for the enhancement of probiotics viability and for applications in suitable products for health and wellness.


Asunto(s)
Composición de Medicamentos/métodos , Tracto Gastrointestinal/microbiología , Probióticos/química , Proteínas de Soja/química , Alginatos/química , Bebidas/análisis , Cápsulas/química , Composición de Medicamentos/instrumentación , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Lactobacillales/química , Lactobacillales/crecimiento & desarrollo , Viabilidad Microbiana , Modelos Biológicos , Probióticos/administración & dosificación , Hidrolisados de Proteína/química , Solubilidad , Glycine max/química
9.
ACS Appl Mater Interfaces ; 12(36): 40067-40077, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794690

RESUMEN

Metal nanoparticles, especially silver nanoparticles (AgNPs), have drawn increasing attention for antimicrobial applications. Most studies have emphasized on the correlations between the antibacterial potency of AgNPs and the kinetics of metallic to ionic Ag conversion, while other antimicrobial mechanisms have been underestimated. In this work, we focused on the surface effects of polydopamine (PDA) coating on the antimicrobial activity of AgNPs. A method of fast deposition of PDA was used to synthesize the PDA-AgNPs with controllable coating thickness ranging from 3 to 25 nm. The antimicrobial activities of the PDA-AgNPs were analyzed by fluorescence-based growth curve assays on Escherichia coli. The results indicated that the PDA-AgNPs exhibited significantly higher antibacterial activities than poly(vinylpyrrolidone)-passivated AgNPs (PVP-AgNPs) and PDA themselves. It was found that the PDA coating synergized with the AgNPs to prominently enhance the potency of the PDA-AgNPs against bacteria. The analysis of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy elucidated that the synergistic effects could be originated from the interaction/coordination between Ag and catechol group on the PDA coating. The synergistic effects led to increased generation of reactive oxygen species and the consequent bacterial damage. These findings demonstrated the importance of the surface effects on the antimicrobial properties of AgNPs. The underlying molecular mechanisms have shined light on the future development of more potent metal nanoparticle-based antimicrobial agents.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli K12/efectos de los fármacos , Indoles/farmacología , Nanopartículas del Metal/química , Polímeros/farmacología , Plata/farmacología , Antibacterianos/química , Indoles/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Imagen Óptica , Tamaño de la Partícula , Polímeros/química , Plata/química , Propiedades de Superficie
10.
ACS Appl Mater Interfaces ; 12(26): 29212-29217, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32511903

RESUMEN

Two-dimensional urea- and thiourea-containing covalent organic frameworks (COFs) were synthesized at ambient conditions at large scale within 1 h in the absence of an acid catalyst. The site-isolated urea and thiourea in the COF showed enhanced catalytic efficiency as a hydrogen-bond-donating organocatalyst compared to the molecular counterparts in epoxide ring-opening reaction, aldehyde acetalization, and Friedel-Crafts reaction. The COF catalysts also had excellent recyclability.

11.
J Chem Educ ; 97(8): 2351-2355, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34354299

RESUMEN

Described is the creation, deployment, and evaluation of a video produced about the synthesis and applications of metal-organic frameworks (MOFs). The goal of this project was to gauge the impact of viewing the video on high school students' conceptions of authentic chemistry practices and applications. Additionally, comparisons were made between the use of the video and more traditional face-to-face presentations given by professional scientists. Observations, student surveys, and an interview with the high school chemistry teacher demonstrated the utility of such a video. Specifically, the students who viewed the video reported learning more about the nature of laboratory work in chemistry than other students who did not view the video. Students, regardless of whether they viewed the video or just received a presentation, reported growth in understandings of the applications of chemistry research and porous nanomaterial. Other research chemists are encouraged to consider ways that they could document on video the research that they are performing in order to introduce an untapped audience (high school students) to authentic chemistry research in a practically simple manner. During times of crisis, such as a pandemic, online videos could be a useful tool for high school chemistry teachers to use in collaboration with research faculty, particularly when schools are closed.

12.
ACS Appl Mater Interfaces ; 11(47): 44204-44213, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31692322

RESUMEN

The solid electrolyte interphase (SEI) layer plays an important role in altering the ion transport and modifying the structural evolution of the Li metal anode during repeated cycling. While the fundamental understanding of the SEI properties has been continuously advanced in recent years, effectively tuning the SEI components, especially the inorganic constituents, is still challenging. In this work, tungsten trioxide, WO3, is found to promote the formation of inorganic salts, for example, LiF/Li2CO3 in SEI layers, thereby enhancing the SEI properties such as mechanical and chemical stabilities. Additionally, WO3 is simultaneously reduced to electronic W nanoparticles during the electrochemical process, mitigating the formation of "dead" Li, which otherwise is completely wrapped by the accumulated insulating SEI layers. The possibility of WO3 in catalyzing electrolyte decomposition, through favored reaction pathway, to produce robust SEI layers is discussed. This work provides new insights into the control of the SEI properties on Li metal surfaces.

13.
ACS Omega ; 4(17): 17209-17222, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31656894

RESUMEN

Bimetallic iron-nickel-based nanocatalysts are perhaps the most active for the oxygen evolution reaction (OER) in alkaline electrolytes. Recent developments in literature have suggested that the ratio of iron and nickel in Fe-Ni thin films plays an essential role in the performance and stability of the catalysts. In this work, the metallic ratio of iron to nickel was tested in alloy bimetallic nanoparticles. Similar to thin films, nanoparticles with iron-nickel atomic compositions where the atomic iron percentage is ≤50% outperformed nanoparticles with iron-nickel ratios of >50%. Nanoparticles of Fe20Ni80, Fe50Ni50, and Fe80Ni20 compositions were evaluated and demonstrated to have overpotentials of 313, 327,, and 364 mV, respectively, at a current density of 10 mA/cm2. While the Fe20Ni80 composition might be considered to have the best OER performance at low current densities, Fe50Ni50 was found to have the best current density performance at higher current densities, making this composition particularly relevant for electrolysis conditions. However, when stability was evaluated through chronoamperometry and chronopotentiometry, the Fe80Ni20 composition resulted in the lowest degradation rates of 2.9 µA/h and 17.2 µV/h, respectively. These results suggest that nanoparticles with higher iron and lower nickel content, such as the Fe80Ni20 composition, should be still taken into consideration while optimizing these bimetallic OER catalysts for overall electrocatalytic performance. Characterization by electron microscopy, diffraction, and X-ray spectroscopy provides detailed chemical and structural information on as-synthesized nanoparticle materials.

14.
Sci Rep ; 8(1): 5640, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618825

RESUMEN

Recent development of group-IV alloy GeSn indicates its bright future for the application of mid-infrared Si photonics. Relaxed GeSn with high material quality and high Sn composition is highly desirable to cover mid-infrared wavelength. However, its crystal growth remains a great challenge. In this work, a systematic study of GeSn strain relaxation mechanism and its effects on Sn incorporation during the material growth via chemical vapor deposition was conducted. It was discovered that Sn incorporation into Ge lattice sites is limited by high compressive strain rather than historically acknowledged chemical reaction dynamics, which was also confirmed by Gibbs free energy calculation. In-depth material characterizations revealed that: (i) the generation of dislocations at Ge/GeSn interface eases the compressive strain, which offers a favorably increased Sn incorporation; (ii) the formation of dislocation loop near Ge/GeSn interface effectively localizes defects, leading to the subsequent low-defect grown GeSn. Following the discovered growth mechanism, a world-record Sn content of 22.3% was achieved. The experiment result shows that even higher Sn content could be obtained if further continuous growth with the same recipe is conducted. This report offers an essential guidance for the growth of high quality high Sn composition GeSn for future GeSn based optoelectronics.

15.
Nanomaterials (Basel) ; 8(3)2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29562669

RESUMEN

(1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of "greener" protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs) using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3) Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM), Scanning electron microscope (SEM), and Atomic Force microscopy (AFM), X-ray diffraction (XRD), UV-visible spectroscopy, energy dispersive X-ray (EDX), and thermogravimetric analyses (TGA); (4) Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents.

16.
Nanoscale ; 10(4): 2138-2147, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29327020

RESUMEN

Room-temperature ferrimagnetic and superparamagnetic properties, and the magnetic interactions between the core and shell, of our iron-incorporated chromia-based core shell nanoparticles (CSNs) have been investigated using a combination of experimental measurement and density functional theory (DFT) based calculations. We have synthesized CSNs having an epitaxial shell and well-ordered interface properties by utilizing our hydrothermal nanophase epitaxy (HNE) technique. The ferrimagnetic and superparamagnetic properties of the CSNs are manifested beyond room temperature and magnetic measurements reveal that the exchange bias interaction between the antiferromagnetic (AFM) core and ferrimagnetic (FiM) shell persists close to ambient temperature. The DFT calculations confirm the FiM ordering of the Fe-chromia shell. Our calculations show that the FiM ordering is associated with a band gap reduction, Fe-O d-p orbital hybridization, and AFM type Fe-Cr σ type superexchange interaction in the α-Fe0.40Cr1.60O2.92 shell of the CSNs. The novel magnetic core-shell nanoparticles possess a shell comprised of a metastable Fe(ii)-chromia phase, resulting in unique magnetic properties that make them ideal for magnetic device and medicinal applications.

17.
ACS Appl Bio Mater ; 1(5): 1458-1467, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34996250

RESUMEN

Carbon dots (CDs), as a new generation of fluorescent nanoparticles, have been greatly considered for different biomedical applications. In the present study, a one-pot hydrothermal method was developed for the synthesis of a series of carbon dots (CDs) for cancer imaging and therapy. Taxane diterpenoids were utilized as the carbon source, different diamines were used as the nitrogen source, and folic acid was used as a targeting agent. High-quality photostable and multicolor (blue and green) carbon nanocrystals with a hexagonal shape, a narrow size distribution of less than 20 nm, and high fluorescence quantum yield of up to 50.4% were obtained from taxanes in combination with m-phenylenediamine and folic acid to give the best results. The nanoparticles displayed a potent anticancer activity with IC50 values of 31.3 ± 2.7 and 34.1 ± 1.1 µg mL-1 for the human MCF-7 and HeLa cancer cell lines, respectively, and IC50 value of 120.5 ± 3.8 µg mL-1 on the normal human fibroblast cells. The flow cytometry studies determined apoptosis-mediated cell death as the main anticancer mechanism of CDs, and the molecular studies revealed the induction of both extrinsic and intrinsic apoptosis pathways. The overall results indicated the great potential of synthesized CDs for the simultaneous cancer imaging and therapy.

18.
J Appl Toxicol ; 37(11): 1288-1296, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28677847

RESUMEN

Graphene-based nanomaterials have received significant attention in the last decade due to their interesting properties. Its electrical and thermal conductivity and strength make graphene well suited for a variety of applications, particularly for use as a composite material in plastics. Furthermore, much work is taking place to utilize graphene as a biomaterial for uses such as drug delivery and tissue regeneration scaffolds. Owing to the rapid progress of graphene and its potential in many marketplaces, the potential toxicity of these materials has garnered attention. Graphene, while simple in its purest form, can have many different chemical and physical properties. In this paper, we describe our toxicity evaluation of pristine graphene and a functionalized graphene sample that has been oxidized for enhanced hydrophilicity, which was synthesized from the pristine sample. The samples were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, thermogravimetric analysis, zeta-potential, atomic force microscopy and electron microscopy. We discuss the disagreement between the size of imaged samples analyzed by atomic force microscopy and by transmission electron microscopy. Furthermore, the samples each exhibit quite different surface chemistry and structure, which directly affects their interaction with aqueous environments and is important to consider when evaluating the toxicity of materials both in vitro and in vivo. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Fulerenos/toxicidad , Grafito/toxicidad , Nanopartículas/toxicidad , Animales , Fulerenos/química , Grafito/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Oxidación-Reducción , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Medición de Riesgo , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Relación Estructura-Actividad , Propiedades de Superficie , Termogravimetría , Pruebas de Toxicidad
19.
Nanoscale Res Lett ; 12(1): 183, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28282982

RESUMEN

An experimental study of the photoconductivity time decay in InGaAs/GaAs quantum dot chain structures is reported. Different photoconductivity relaxations resulting from spectrally selecting photoexcitation of InGaAs QWR or QDs as well as GaAs spacers were measured. The photoconductivity relaxation after excitation of 650 nm follows a stretched exponent with decay constant dependent on morphology of InGaAs epitaxial layers. Kinetics with 980 nm excitation are successfully described by equation that takes into account the linear recombination involving Shockley-Read centers in the GaAs spacers and bimolecular recombination via quantum-size states of InGaAs QWRs or QDs.

20.
Nano Lett ; 17(3): 1825-1832, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28128565

RESUMEN

MoS2 is a promising electrode material for energy storage. However, the intrinsic multilayer pure metallic MoS2 (M-MoS2) has not been investigated for use in supercapacitors. Here, an ultrafast rate supercapacitor with extraordinary capacitance using a multilayer M-MoS2-H2O system is first investigated. Intrinsic M-MoS2 with a monolayer of water molecules covering both sides of nanosheets is obtained through a hydrothermal method with water as solvent. The super electrical conductivity of the as-prepared pure M-MoS2 is beneficial to electron transport for high power supercapacitor. Meanwhile, nanochannels between the layers of M-MoS2-H2O with a distance of ∼1.18 nm are favorable for increasing the specific space for ion diffusion and enlarging the surface area for ion adsorption. By virtue of this, M-MoS2-H2O reaches a high capacitance of 380 F/g at a scan rate of 5 mV/s and still maintains 105 F/g at scan rate of 10 V/s. Furthermore, the specific capacitance of the symmetric supercapacitor based on M-MoS2-H2O electrodes retain a value as high as 249 F/g under 50 mV/s. These findings suggest that multilayered M-MoS2-H2O system with ion accessible large nanochannels and efficient charge transport provide an efficient energy storage strategy for ultrafast supercapacitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...